The local loop of the saccadic system closes downstream of the superior colliculus.

نویسندگان

  • R Kato
  • A Grantyn
  • Y Dalezios
  • A K Moschovakis
چکیده

Models of the saccadic system differ in several respects including the signals fed back to their comparators, as well as the location and identity of the units that could serve as comparators. Some models place the comparator in the superior colliculus while others assign this role to the reticular formation. To test the plausibility of reticular models we stimulated electrically efferent fibers of the superior colliculus (SC) of alert cats along their course through the pons, in the predorsal bundle (PDB). Our data demonstrate that electrical stimulation of the PDB evokes saccades, even with stimuli of relatively low frequency (100 Hz), which are often accompanied by slow drifts. The velocity and latency of saccades are influenced by the intensity and frequency of stimulation while their amplitude depends on the intensity of stimulation and the initial position of the eyes. The dynamics of evoked saccades are comparable to those of natural, self-generated saccades of the cat and to those evoked in response to the electrical stimulation of the SC. We also show that PDB-evoked saccades are not abolished by lesions of the SC and that therefore antidromic activation of the SC is not needed for their generation. Our data clearly demonstrate that the burst generator of the horizontal saccadic system is located downstream of the SC. If it is configured as a local loop controller, as assumed by most models of the saccadic system, our data also demonstrate that its comparator is located beyond the decussation of SC efferent fibers, in the pons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cerebellar contribution to saccades and gaze holding: a modeling approach.

The possible role of the cerebellum for the control of saccades and gaze holding is reconsidered using a computational modeling approach. As suggested by previous research, control of gaze holding is assumed to be enhanced by the floccular lobe, whereas control of the saccadic pulse is governed by the oculomotor vermis and fastigial nucleus. In the present work, a negative feedback loop via the...

متن کامل

Analysis of the frequency response of the saccadic circuit: system behavior.

To more thoroughly describe the system dynamics for the saccadic circuit in monkeys, we have determined the frequency response by applying a frequency modulated train of microstimulation pulses in the superior colliculus. The resulting eye movements reflect the transfer function of the saccadic circuit. Below input modulations of 5 cycles/s, the saccadic circuit increasingly oscillates with mul...

متن کامل

Histological and Biochemical Alterations in the Superior Colliculus and Lateral Geniculate Nucleus of Juvenile Rats Following Prenatal Exposure to Marijuana Smoke

Prenatal exposure to marijuana has been associated with a variety of brain deficits, as Δ9-tetrahydrocannabinol (THC), its main active ingredient crosses the placenta and affects foetal brain development. Despite this effect, marijuana remains a commonly abused substance among pregnant women. In the current study, we examined the histological and biochemical changes in the superior colliculus (...

متن کامل

The Mechanism of Saccade Motor Pattern Generation Investigated by a Large-Scale Spiking Neuron Model of the Superior Colliculus

The subcortical saccade-generating system consists of the retina, superior colliculus, cerebellum and brainstem motoneuron areas. The superior colliculus is the site of sensory-motor convergence within this basic visuomotor loop preserved throughout the vertebrates. While the system has been extensively studied, there are still several outstanding questions regarding how and where the saccade e...

متن کامل

A neuromorphic object-capturing circuit based on biological saccadic systems

A simple object capturing circuit which is based on the biological structure of the superior colliculus and retina is proposed for realizing an artificial saccadic system. The function of the superior colliculus, an afferent and efferent mappings are considered in the circuit. Results of numerical and SPICE simulations reveal that the proposed circuit could shift the gaze toward the target in t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neuroscience

دوره 143 1  شماره 

صفحات  -

تاریخ انتشار 2006